本文共 1224 字,大约阅读时间需要 4 分钟。
good代码是很重要的,特别是在编写代码时要非常小心,避免任何可能导致代码失败的错误。在这段代码中,你将逐次将数字从n递减到1,并将这些数字相乘,记录中间过程中的多余零的数量。
class Solution {public: int trailingZeroes(int n) { int sum = 1, target = 0; while (n >= 1) { sum *= n; --n; while (sum % 10 == 0) { sum /= 10; ++target; } sum %= 10000; } return target; }}; 这段代码通过在每个步骤中计算中间结果,并不断将末尾的零去掉,最终保留了最后的结果。这显示了如何在递减过程中分解问题,虽然这种方法在计算阶乘的末尾零时比较繁琐,但是它确实能达到预期的目标。
为了更有效地计算阶乘末尾零的数量,可以利用因数分解的方法。这个方法的核心思想是计算数中包含5的因子数目,因为每对2和5都会在阶乘的结果中生成一个零。通过统计5的因子数量,我们可以根据这个数目来确定末尾有多少个零。
public: int trailingZeroes(int n) { int sum = 0; for (int i = 1; i <= n; ++i) { if (i % 5 == 0) { int j = i; do { ++sum; j /= 5; } while (j % 5 == 0); } } return sum; }}; 这个代码通过遍历从1到n的每个数字,检查是否能被5整除。如果能,它就不断地除以5,直到它不再能被5整除为止。每一次除以5的过程都会增加计数器sum,从而记录下该数的5因子的数量。通过统计所有数字中包含5因子的数目,我们可以确定阶乘的末尾有多少个零。
请注意,这种方法是唯一的优化方法,因为它避免了在计算过程中处理过大的数,直接转移了计算焦点,确保了算法的高效性。这种方法不仅简化了问题,而且提升了性能,在计算n很大的情况下特别有效。
通过这两种不同的方法,你可以根据具体需求来选择最合适的解决方案。在实际应用中,第二种方法在计算阶乘末尾零的数量时更加高效和准确,因此它被广泛应用于各种数学计算中。
转载地址:http://cfeoz.baihongyu.com/